The Kinetic Evolution of the Electron Strahl in the Inner Heliosphere

Seong-Yeop Jeong¹, Daniel Verscharen^{1,2}, Christian Vocks³, Joel B. Abraham¹, Christopher J. Owen¹, Robert T. Wicks⁴, Andrew N. Fazakerley¹, David Stansby¹, Laura bercic¹, Georgios Nicolaou⁵, Jeffersson A. Agudelo Rueda¹ and Mayur Bakrania¹

> ¹Mullard Space Science Laboratory, University College London, Dorking, RH5 6NT, UK; <u>s.jeong.17@ucl.ac.uk</u> ²Space Science Center, University of New Hampshire, Durham, NH 03824, USA ³Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany ⁴Northumbria University, Newcastle, UK ⁵Southwest Research Institute, San Antonio, TX 78238, USA

1. Kinetic Transport Equation

Fokker-Planck Operator

2. Numerical Results for the Kinetic Evolution of an Electron VDF

We solve the kinetic transport equation, given Section 1. In this in section, numerical our solution shows the radial evolution of an electron VDF through the spherical expansion of the solar wind from 5 solar radii to 20 solar radii.

0.02

0.00

6

8

10

 n_c/n_e

n_s/n_e

 U_c/v_{Ae0}

 U_s/v_{Ae0}

T∥c

 $T_{\perp c}$

T∥s

 $\beta_{\parallel c}$

β_{∥s}

14

16

18

20

12

 r/r_s

We compare the fitted parameters from numerical solutions with the fitted parameters from the electron VDF measured by PSP. The above figures show the fitted electron VDF (black line) measured by PSP at 20.96 solar radii on 27/09/2020 at 20:24:18 during encounter 6.

5. Oblique Fast-Magnetosonic/Whistler (FM/W) Instability

We investigate the scattering of electron strahl through the oblique FM/W instability by using the fitted parameters from our numerical solution. The above figure shows the comparison of the strahl bulk velocity (red line) with the threshold for the oblique FM/W instability (black line). In our interesting region, the electron strahl is not scattered because the strahl bulk velocity is lower than the threshold.

